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Choosing good subsamples for regression models

Introduction
• A common problem in health research is that we have a 

large database with many variables measured on a large 

number of individuals. 

• We are interested in measuring additional variables on 

a subsample; these measurements may be newly 

available, or expensive, or simply not considered when 

the data were first collected. 

• The intended use for the new measurements is to fit a 

regression model generalisable to the whole cohort (and 

to its source population).

• This is a two-phase sampling problem. It measures 

variables of interest on a subcohort where the outcome 

and covariates are readily available or cheap to collect 

on all individuals in the cohort.

• We aimed to choose a good phase-two subsample to 

minimise the variance of parameters of interest in the 

regression model.

• We focus on deriving the optimal sampling for design-

based estimators. 

From sums to parameters
• In classical design and analysis, researchers were 

interested in estimating totals. 

• A unifying concept in translating the classical results 

from sums to regression parameters is the influence 

function. 

• Influence function shows the behavior of the target 

estimator under slight perturbations of the empirical 

distribution.

• Suppose β are the regression parameters in the model of 

interest, an asymptotically linear estimator satisfies:

𝑁(෠β − β) =
1

𝑁
∑hi(β) + op(1)

where hi(β) is a function of the ith observation.

• The mean of influence function for an asymptotically 

linear estimator gives the linear approximation of the 

estimator

• For design-based estimators, Demnati and Rao (2004) 

showed that the influence functions can be computed as 

the derivative of the estimator of regression parameters 

with respected to weights on each observation

On optimal designs

• Suppose the number of strata is K, we want to sample n 

individuals from a cohort of size N.

• Optimal design for sums:

Under stratified random sampling for estimation of the  

population totals of variable Y, the optimal allocation is   

Neyman allocation :

𝑛𝑘 ∝ 𝑁𝑘𝜎𝑘

where σk is the standard deviation of the variable Y. 

• Optimal design for regression with IPW estimation

Since the regression estimates are asymptotically  

equivalent  to the estimated population total of influence 

functions. The optimal design for analysis via the IPW 

estimator is to apply Neyman allocation to influence  

functions:

𝑛𝑘 ∝ 𝑁𝑘 var hi(β) | stratum 𝑘)

In the case of binary variables, McIsaac and Cook 

(2015) arrived at this design rule by direct optimisation

using Lagrange multipliers

• Optimal design for regression with AIPW estimation

Chen and Lumley (2022) showed the optimal design for 

analysis via the AIPW / Generalised raking estimator   

was to apply Neyman allocation to the projections of  

influence functions

𝑛𝑘 ∝ 𝑁𝑘 var hi(β)− hi(β∗)𝜃 | stratum 𝑘)

where hi(β) are the influence functions and hi(β*) are 

the best estimates of influence functions we have of 

them.
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Simulation studies
• Generated 2000 phase-one samples with size 4000 and 

sampled 600 individuals at phase two. 

• Suppose both the variables of interest X and outcome Y 

were continuous, and X ~ N(0,1).

• An error-prone variable ෨𝑋 was generated from X+U, 

where U ~ N(0, 0.52).

• 𝑌 = 1 + 0 × 𝑋 + 𝑍1 + 𝑍2 + 𝜖, where 𝑍1 ∼
Ber𝑛 0.5 , 𝑍2 ∼ 𝑁 0, 1 , and 𝜖 ∼ 𝑁 0, 1 .

• We defined 3 strata based on the cut-off points at the 
20th and 80th percentiles of ෨𝑋.

• We compared the optimal design for analysis via the 
IPW estimator (IF-IPW) with that for analysis via the 
generalised raking estimators (IF-GR) under 
generalised raking estimations.

Results:

Empirical comparison of parameter β estimated from 
raking analysis between IF-IPW and IF-GR.

Empirical comparison of sample sizes between the 
optimal design for analysis via the IPW estimator (IF-
IPW) and those for analysis via generalized raking 
estimators (IF-GR).

• The two designs end up with very similar efficiency 

under generalised raking analysis

• The two designs can be very different.

• Broadly the same results were found for a wide range of 

scenarios in Chen and Lumley (2022).

Conclusions and future work
Conclusions:

• We derived closed-form solutions for the optimal design 

for analysis via the IPW and generalised raking 

estimators.

• In practice, it is hard to approximate the optimal design 

for analysis by generalised raking estimators since it 

needs to estimate the influence functions and their best 

estimates. 

• Through simulation studies, we found that the two 

designs can be very different, but they often end up with 

similar efficiency. 

• Lack of improvement is desired in practice. 

Future work: 

• The semiparametric maximum likelihood estimators are 

more efficient than design-based estimators, but they are 

not robust to model misspecification. Even if the model 

is only slightly misspecified, the design-based estimators 

can be more efficient in some settings. 

• It would be interesting to study and understand the 

efficiency gap between the model-based and design-

based estimators.


