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A Quick Introduction to Plant Breeding Programs

The aim of plant breeding
programs is to release varieties
which are superior for traits of
interest such as harvest yield.
The breeding cycle spans 8-10
years between initial crosses and
variety release.
Lines are evaluated for harvest
yield in field trials. Note the
terms; lines, varieties and
genotypes are used throughtout
synonymously.
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Introduction to Plant Breeding Programs

A breeding program involves
evaluation in multiple stages such
as stage 1 (S1), stage 2 (S2),
stage 3 (S3) and stage 4 (S4),
with selection decisions made
between stages in each year.
Only the top performing lines are
progressed into the next stage.
S1: 1000 lines → S2: 300 lines
→ S3: 100 lines → S4: 60 lines
There are multiple cycles occuring,
with a new cohort of lines entering
S1 each year. These cohorts are
defined as contemporary groups
(CGs).
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Introduction

Trials are conducted across various locations and years in multi-environment trials (METs), where
environments are defined as year and location combinations.
METs are an important tool in plant breeding to measure genotype by environment interaction. As
genotypes vary in their response to different environments.
It is widely accepted that single step factor analytic linear mixed models (FALMMs) are used for
the analysis of such MET data.
The methodology provides numerous advantages over other piecemeal/ad hoc approaches (Smith
et al., 2021a).
Fundamental information for variety selection from an FALMM are the predictions of variety effects
for individual environments.
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Colocated trials arise as a result of the construction of MET data sets

Additionally Smith et al. (2021b) highlight the importance of the construction of the appropriate
MET data sets for selection decisions.
They introduced the concept of CGs and data bands.
MET data sets are formed by combining bands of data to trace the selection histories of lines
within CGs, which optimizes the information available for selection decisions.
Also naturally results in the occurrence of so-called "colocated" trials.

There are two possible scenarios of colocated trials:
Multiple trials from one stage:

I Such as early stage trials with large numbers of genotypes which are blocked according to size to
ensure that management activities can be completed in a single day or suitable time frame.

Multiple trials from more than one stage:
I Such as several S1 trials along side S2 and S3 trials.
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An Example InterGrain Hard Wheat Stage 1 & Stage 2 MET 2021

Lets look at an InterGrain MET data set for hard wheat selection decisions for:
Selection Decision Stage 1:

I Stage 1 2021 lines progressed to Stage 2 2022.
Selection Decision Stage 2:

I Stage 2 2021 lines progressed to Stage 3 2022.

Lets take a deeper dive into the environment Mingenew 2021.
Three colocated trials: S1A, S1B and S2.
Two trials S1A and S1B are Stage 1 trials with a p-rep design.
One trial S2 is a Stage 2 trial with nearly all varieties having at least two replicates.
All have been designed with 12 ranges and 48 rows.
The two Stage 1 trials S1A and S1B here are "management blocks".
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Mingenew 2021 Stage 1 and Stage 2 Trials

S1A S1B S2

1 12 24 36 481 12 24 36 481 12 24 36 48
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Definition of Colocated Trials
Conducted in the same environment.
Very similar agronomic management practices (such as fertiliser and herbicide application).
Within a certain sowing date window.
Within a certain harvesting date window.
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Models for Colocated Trials
Recall our example y ordered Row (coded within trials) within Range (coded within trials) within
MBlock,

y = Xτ + Zg ua + Zg ue + Zpup + e,

where ua and ue are additive and non-additive genetic effects so that we have partitioned the (total)
genetic effects i.e. ug = ua + ue . Also

var




ua
ue
up
e


 =


Ga(γa) 0 0 0

0 Ge(γe) 0 0
0 0 Gp(γp) 0
0 0 0 R(φ)

 .

Two branches of considerations in model specification for colocated trials:
Estimation of non-genetic variance parameters.
Estimation of genetic variance parameters.
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People often analyse colocated trials as separate trials. This practice cannot produce meaningful
results:

I Results with specifying Variety by Trial interactions within an Environment.
I Also results with specifying different spatial processes within an Environment and leads to poor

precision of the genetic and non-genetic variance parameter estimation.
I Lets show what the results look like from analysing S1A and S1B as two trials.
I These trials have common check varieties so we can compare the genetic predictions.
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Predicted Genetic Effects of S1A vs S1B for check varieties in common
when analysing each trial separately.
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Analysing each colocated trial separately is like fitting Variety by Replicate in a single trial.
In a MET the only sensible option for estimating variety by environment interaction is to fit Variety
by Environment (V x E) effects, not Variety by Trial within Environment interaction.
When fitting V x E then the non-genetic model terms and variance parameters MUST be at the
environment level to get sensible predictions of the genetic effects at the V x E level.
Thus for S1A and S1B we specify Ga = γaA where γa is the additive genetic variance and A is the
numerator relationship matrix. Also specify Ge = γeI where γe is the non-additive genetic variance.
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Estimation of Non-genetic Variance Parameters

Lets look at Models for S1A and S1B:
Three model specifications were compared with genetic effects specified at the environment level.

1 equal: rows and ranges are coded across the single contiguous array (i.e. 12 ranges and 96 rows).

In the model random row, column effects and the spatial variance matrix are conmmensurate with
this layout.
The residual variance matrix is specified so that given the appropriate ordering

R(φ) = σ2Σ(φc)⊗Σ(φr ),

where φ = (σ2, φc , φr )> and Σ(φc) and Σ(φr ) are autoregressive lag one (AR1) correlation
matrices of order (12× 12) and (96× 96).
Range effects are specified so that uc is a 12-dimensional vector with variance matrix γc I12.
Row effects are specified so that ur is a 96-dimensional vector with variance matrix γr I96.
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Estimation of Non-genetic Variance Parameters

Models
1 equal constrained: rows and ranges are coded within trials (i.e. 12 ranges and 48 rows).

In the model a separate set of random effects for both rows and ranges and a separate spatial
variance model is specified for each trial.
BUT the variance parameters are constrained to be equal across trials.
The residual variance matrix is specified so that

R(φ) = σ2 ⊕2
i=1 Σi(φc)⊗Σi(φr ),

where φ = (σ2, φc , φr )> and Σi(φc) and Σi(φr ) are AR1 correlation matrices of order (12× 12)
and (48× 48) for i = 1, 2.
Range effects are specified so that uc is a 24-dimensional vector with variance matrix γc I24.
Row effects are specified so that ur is a 96-dimensional vector with variance matrix γr I96.
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Estimation of Non-genetic Variance Parameters

Models
3 unequal: rows and ranges are also coded within trials (i.e. 12 ranges and 48 rows).

In the model a separate set of random effects for both rows and ranges and a separate spatial
variance model is specified for each trial.
BUT the variance parameters are allowed to vary across trials.
The residual variance matrix is specified so that

R(φ) = ⊕2
i=1σ

2
i Σi(φci )⊗Σi(φri ),

where φ = (σ2
1 , φc1 , φr1 , σ

2
2 , φc2 , φr2)> also Σi(φci ) and Σi(φri ) are AR1 correlation matrices of order

(12× 12) and (48× 48) for i = 1, 2.
Range effects are specified so that uc is a 24-dimensional vector with variance matrix ⊕2

i=1γci I12.
Row effects are specified so that ur is a 96-dimensional vector with variance matrix ⊕2

i=1γri I48.
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Model Specification in ASReml-R

1 equal:
as <- asreml(yield~GDrop, random=~vm(GKeep, Aiming) + ide(GKeep) +
Experiment + RecodedRow + Range,
residual=~ar1(Range):ar1(RecodedRow), data=ming.df,
na.action = na.method(x=’include’))

2 equal constrained:
Vcms1 <- c(1, 1)%x%diag(3) ## constraint matrix
ascons1 <- asreml(yield~GDrop, random=~vm(GKeep, Aiming) + ide(GKeep) +
Experiment + Experiment:Row + Experiment:Range,
residual=~dsum(~ar1(Range):ar1(Row)|Experiment), data=ming.df,
na.action = na.method(x=’include’), vcm=Vcms1)

3 unequal:
asuneq <- asreml(yield~GDrop, random=~vm(GKeep, Aiming) + ide(GKeep) +
Experiment + at(Experiment):Row + at(Experiment):Range,

residual=~dsum(~ar1(Range):ar1(Row)|Experiment), data=ming.df,
na.action = na.method(x=’include’))
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An In Silico Experiment

Aim
To compare the several spatial models in realistic scenarios.

Often extraneous variation is seen in the form of range and row effects i.e. from serpentine
harvesting and management practices (Gilmour et al., 1997). We assess the methods for three
different row and column variances respectively.
Simulate data from the model which biologically and statistically is most sensible.
Use correlation parameters for range and row using knowledge from our experience of analysing
early stage trials.
Use additive and non-additive genetic variance parameters so that the generalised heritability for
single replicate individuals is approximately 0.838. Also so that the percentage of additive genetic
variance to total genetic variance is approximately 73.1%.
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An In Silico Experiment

Simulate data with different scenarios and subsequently analyse said data with the three models
equal, equal constrained and unequal.
Compare the accuracies of the total genetic BLUPs.
Compare the log D-optimality criterion of the three models, which is the determinant of the
variance matrix (inverse expected information matrix) of the estimated variance parameters. It is a
measure of the generalised variance (i.e. the quality) of the estimated variance parameters and thus
should be minimised.
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Accuracy of Predictions
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Quality of Variance Parameter Estimation - log D-optimality criterion
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Results of the Simulation Study for Non-Genetic Effects

equal performs best with the highest prediction accuracy of the total genetic effects and with the
lowest log D-optimality criterion for the variance parameters.
equal constrained performs second in front of unequal for both prediction accuracy and
reliability of variance parameter estimation.
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Estimation of Genetic Variance Parameters

The Effects of Selection on Genetic Variance Parameter Estimation:
Thompson (1979 & 2008) describe the effect of selection on genetic variance parameter estimation in
the context of animal breeding. We describe this in the context of plant breeding.
We consider two trials conducted across two years, the first which evaluates S1 lines in year 1 (labelled
S1Y1). The second in year 2 evaluates the subsequent top performing lines from S1Y1 in S2 (labelled
S2Y2). Two methods of analyses we consider are:

1 A univariate analyses of S2Y2 and S1Y1 data alone, where we do not account for the selection
histories of lines in variance parameter estimation.

2 A bivariate analyses of both S2Y2 and S1Y1 data, where we account for the selection histories of
lines in variance parameter estimation.

The univariate analyses will lead to biased inferences since the data of S2Y2 can be regarded as
conditional on the yield data of S1Y1. So we need to use a multivariate approach.
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Model Specification for Colocated trials in Summary.

For the quality of variance parameter estimation:
A multivariate approach should be used with the inclusion of data pertaining to the selection
histories of lines in the form of data bands.

I Analysing colocated trials corresponding to different stages strengthens genetic predictions by the
addition of indirect information.

I It is reasonable to assume a common genetic variance between stages since lines are usually derived
from a common breeding population.

Genetic effects should be specified at the environment level with a single genetic variance. In the
context of METs this is the specification of V x E effects to estimate variety by environment
interaction.
Non-genetic effects should also be specified at the environment level, for appropriate shrinkage of
the genetic BLUPs.
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Questions?
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